TPM support in oVirt

Milan Zamazal <mzamazal@redhat.com>
Tomáš Golembiovký <tgolembi@redhat.com>

September 14, 2021
What is Trusted Platform Module (TPM)?

A built-in hardware module with a small amount of secure persistent memory, providing some cryptography functions (random number generator, key generator, hash generator, signatures). It can be used for:

- Checking hardware and software integrity.
- Remote hardware and software attestation.
- Key management and protection for purposes such as disk encryption.
- Restricting users (licensing, DRM, . . .).

If a TPM device is lost or reset, the stored attestations and keys are lost.

Milan Zamazal, Tomáš Golembiovský
TPM support in oVirt
September 14, 2021
A TPM device and its associated facilities can be required (BitLocker, Windows 11) or useful (LUKS, securing boot, ...) in the guest OS.

Examples of typical usages:

- Disk encryption (BitLocker, LUKS)
- Securing Windows (boot, HyperV, ...)

Why TPM support in oVirt?
TPM in oVirt

Virtualization:

- TPM 2.0
- **Emulated** device only (no hardware support needed); host TPM devices not suitable for use by guests
- Virtual TPM device + associated persistent data
- `swtpm` — the (external) emulator used by QEMU
- `swtpm` keeps its data on the host, in `/var/lib/libvirt/`

Requirements:

- **UEFI**
- Cluster level ≥ 4.6
Enabling TPM for a virtual machine (VM)

It can be enabled or disabled (default) for a VM:

New kind of a VM device: TPM
Secure boot

- UEFI protocol for prevention of loading untrusted code during boot.
- Every software component is first validated against a set of known keys before it is executed.
- 4-5 key types used in the process, some stored in firmware, other in non-volatile memory (NVRAM) of the machine.
- Emulated by QEMU, NVRAM data stored in /var/lib/libvirt/.
Enabling secure boot for a virtual machine

It can be enabled for a VM by selecting the corresponding Chipset/Firmware Type:
VM external data: Persistent data in an emulated non-volatile memory, stored outside the VM process and storage.
Storing VM external data

TPM and secure boot are not very useful without their data being stored persistently. The data is stored in multiple places:

- While a VM is running: Local file system on the host (/var/lib/libvirt/); transferred to destination hosts by libvirt on live migrations
- Persistently: The Engine database
- On storage: Snapshots (in OVF), OVA exports, hibernation

TPM data and secure boot NVRAM data are handled the same way but independently to each other.
Handling stored VM external data

TPM device removed \rightarrow TPM data deleted from the database.

Secure boot disabled \rightarrow secure boot data deleted from the database.

Notes:

- VMs with freshly enabled TPM or secure boot get default initial external data once they are started and their data is retrieved from the host.
- The same applies for new VMs, unless they are created from a template or an OVA export already containing the external data.
- VM external data can be reset by disabling and enabling TPM or secure boot in the VM.
Challenge: Synchronization of the stored data with the guest OS.

VM external data is updated when a VM goes down. A stale rather than up-to-date external data may be stored in case of:

- VM power off from Engine.
- Unreachable or malfunctioning host / Vdsm.

Additionally, external data is retrieved periodically, to hopefully still have recent data in the situations above. But it’s best effort only, having up-to-date data cannot be guaranteed in those cases.

Unclean shutdown from the guest OS or QEMU crash is OK, unless it causes inconsistency in the guest OS itself.

Data in the emulators can change even if there are no changes in the guest OS, this is not a problem.
Challenge: Storing data as of the same moment the snapshot is taken.

Inconsistency of the stored external data and the guest OS file system → the guest OS may refuse to start or to work properly.

No problems with offline snapshots, they capture the exact stored state of the VM. But live snapshots are more complicated.

VM external data is stored in OVF in snapshots.
Live snapshots without memory

Warning: A running VM may have newer external data than those stored in the Engine database.

Recommendations:

- If TPM or secure boot data has been altered recently, wait at least 2 minutes before making a snapshot, to allow periodic data synchronization to the Engine database and the snapshot.
- If you want to be extra sure, make an additional snapshot before changing TPM or secure boot data, to be able to return back to the previous configuration if something bad happens to the new one.
Snapshots with memory are disabled for VMs with TPM:

- libvirt currently doesn’t provide means to guarantee external data in the snapshot correspond to the contents of RAM.
- Inconsistency of VM external data and RAM may lead to a guest OS crash or other problems after running the VM from the snapshot.

Secure boot doesn’t prevent snapshots with memory, but the limitations of live snapshots without memory apply.
Live data stored in an emulator is by definition exposed more than offline data stored in a specialized secure hardware.

It may be present in many places:
What can be done about security?

Only **trusted users** should have access to any of the sensitive areas.

Introducing special user permissions for operations putting VM external data on storage (snapshots, exports, hibernation) may be considered in future.

Note: Automatic VM external data encryption is not used. It doesn’t help much here beyond security by obscurity – encryption keys must also be stored somewhere, resulting in the same problems and limitations.
Limitations

- Live snapshots are not guaranteed to have VM external data consistent with the guest OS.
- Snapshots with memory are disabled when TPM is enabled (https://bugzilla.redhat.com/1855367).
- VM external data is not stored when exporting a VM to deprecated export domains.
- TPM can be enabled only for RHEL \geq 7 and Windows \geq 8.1 guest OSes (can be changed in osinfo).
- Security of data must be carefully considered.
Future work

- Hiding sensitive data in Engine debug logs (not only VM external data).
- Support for snapshots with memory (depending on libvirt – https://bugzilla.redhat.com/1855367).
- Better consistency guarantees for VM external data in snapshots.
- Limiting permissions to put VM external data on storage (snapshots, exports, hibernation; https://bugzilla.redhat.com/1352501).
Resources

- Feature page for secure boot NVRAM data persistence: https://www.ovirt.org/develop/release-management/features/virt/nvram-data.html
- swtpm: https://github.com/stefanberger/swtpm
- tpm2-tools: https://github.com/tpm2-software/tpm2-tools
- Clevis: https://github.com/latchset/clevis
Thank you!

Questions?

<users@ovirt.org>